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Abstract
Background: In this work, support vector regression (SVR) was applied to the optimization of extended
release from swellable hydrophilic pentoxifylline matrix-tablets and compared to multiple linear regres-
sion (MLR). Methods: Binary mixtures comprising ethylcellulose and sodium alginate were used as the
matrix-former. The matrix-former : drug weight ratio and the percentage of sodium alginate in the matrix-
former were the formulation factors (independent variables) and the percentages of drug release at four
different time intervals were the responses (dependent variables). Release was determined according to
United States Pharmacopeia 31 for 11 pentoxifylline matrix-tablet formulations of different independent
variable levels and the corresponding results were used as tutorial data for the construction of an
optimized SVR model. Six additional checkpoint matrix-tablet formulations, within the experimental
domain, were used to validate the external predictability of SVR and MLR models. Results: It was found that
the constructed SVR model fitted better to the release data than the MLR model (higher coefficients of
determination, R2, lower prediction error sum of squares, narrower range of residuals, and lower mean rel-
ative error), outlining its advantages in handling complex nonlinear problems. Superimposed contour
plots derived by using the SVR model and describing the effects of polymer and sodium alginate content
on pentoxifylline release showed that formulation of optimal release profiles, according to United States
Pharmacopeia limitations, could be located at drug : matrix ratio of 1 and sodium alginate content 25% w/
w in the matrix-former. Conclusion: The results indicate the high potential for SVR in formulation develop-
ment and Quality by Design.
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Introduction

Extended-release (ER) systems are used for improved
therapy with long-term oral administration of drugs
characterized by short biological half-life and by narrow
therapeutic window (e.g., xanthine derivatives) because
of their potential of attaining less frequent administra-
tion, relatively steady therapeutic plasma levels, and
fewer side effects. For the development of ER systems,
matrix tablets containing hydrophilic swellable poly-
mers have been widely used because of their cost-effec-
tiveness and easy manufacture by direct compression,
converting powder mixtures of drugs and polymers to
matrix tablets in very short one-step process1.

The polymers hydrate forming a gel layer around the
tablet, which controls drug diffusion. Particularly prefer-
able are combinations of pH-independent dissolving
polymers (e.g., ethylcellulose) with polymers whose
release retarding capability is lower in intestinal than in
gastric pH (e.g., sodium alginate). Such polymer combi-
nations in different weight ratio offer the possibility of
altering the in vitro drug release profiles independently of
the processing variables, for example, compaction pres-
sure, drug particle size, and incorporation of lubricant,
and therefore possibly changing the in vivo release2.

Taking into account that for the registration of ER oral
dosage forms the currently suggested methodology, in
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the Guidance for Industry issued by FDA in 19973,
should involve (a) the development and in vivo evalua-
tion of several formulations with different in vitro drug
release rates, (b) the assessment of the hypothetical in
vivo dissolution profile using an appropriate deconvolu-
tion technique, and (c) the comparison of the two sets of
release data obtained (in vitro and in vivo), both the
rational development of ER formulations with appropri-
ate drug release and their in vitro evaluation become
very important4,5. Therefore, in this work support vector
regression (SVR) is applied in programming the
extended drug release for swellable hydrophilic pentoxi-
fylline matrix tablets and selection of formulations with
optimal release profiles. Pentoxifylline was selected as a
representative water-soluble drug of very short apparent
plasma half-life (0.4–0.8 hours) administered as 400 mg
ER formulation6 and SVR was chosen as a recently intro-
duced statistical technique in various pharmaceutical
fields: quantitative structure-activity relationship (QSAR)
studies7, prediction of toxic activity8, and quantitative
analysis of polymorph mixtures9. Also, SVR was chosen
because it possesses prominent advantages compared to
conventional neural networks: high capability of gener-
alization due to strong theoretical background and
avoiding local minima; secured offer of quick solution by
a standard algorithm (quadratic programming)10. There-
fore, their use within the context of FDA’s initiative for
Pharmaceutical Quality by Design (QbD)11,12, as well as
ICH Q8 Pharmaceutical Development guidance13, seems
to be promising and advantageous because an essential
part of the QbD approach consists of the use of statistical
experimental design combined with the use of novel,
highly efficient model fitting methods such as machine-
learning algorithms.

Materials and methods

Materials
Pentoxifylline powder (53.8% w/w particles below 180 μm
and 46.2% between 180 and 400 μm) was from Pharma
International, Amman, Jordan. Ethylcellulose (41.2% w/w
particles below 180 μm and 58.8% between 180 and
500 μm) and sodium alginate (90.4% w/w particles below
180 μm and 9.6% between 180 and 400 μm) were pur-
chased from BDH, Poole, Dorset, UK. All materials were
used as received.

Preparation of matrix tablets
Seventeen (11 + 6) batches of matrix tablets containing
fixed amount of pentoxifylline (400 mg) and a mixture of
ethylcellulose and sodium alginate at appropriate weight
ratio as a matrix former were prepared by direct com-
pression as follows. Accurately weighed pentoxifylline
and polymer powders were mixed in a small mortar with
a spatula for 15 minutes. Then, 1% w/w magnesium
stearate was added and mixed again for 5 minutes. A
13-mm flat-faced punch and die set and a hand-operated

hydraulic press (Shimadzu, Kyoto, Japan) were used to
compress the powder mixture at 10 MPa pressure for
30 seconds, resulting in saturated (reaching minimum
attainable near zero porosity) matrix tablets.

In vitro drug release
Percentage of pentoxifylline released from the matrix
tablets was determined according to the method sug-
gested for pentoxifylline ER tablets in USP 31 (Test 1).14

Apparatus II paddle dissolution system (Pharma Test,
PTW 2, Hainburg, Germany), at 100 rpm, with 900 mL of
distilled water as dissolution medium was used. The
paddle system was preferred over basket apparatus,
because it did not result in disruption of the swelling
and release process of the relatively large and highly
swellable matrix tablets under investigation. After cer-
tain dissolution time (1, 4, 8, and 12 hours as specified in
the USP 31 method, Test 1), 10-mL samples of dissolu-
tion liquid were taken and the volume was replaced
with water. The samples were filtered through 0.45-μm
cellulose acetate syringe filter and the concentration of
dissolved pentoxifylline was determined by UV spectros-
copy (Spectronic 601, Milton Roy, Ivyland, PA, USA)
after suitable dilution, at a wavelength corresponding to
maximum absorbance (273 nm). All tests were per-
formed in triplicate and from the mean concentration
the percentage of drug release was determined.

Experimental design
A full factorial experimental design was followed with
two formulation factors as independent variables (the
matrix former: drug weight ratio, X1, and the percentage
of sodium alginate in the matrix former, X2) at three
equally spaced levels (1.0, 1.5, and 2.0 for X1 and 0, 25,
and 50% for X2) and two replicated central points15. The
percent release at 1, 4, 8, and 12 hours (Y1–Y4) were con-
sidered as dependent variables (responses) and the USP
31 release limits (Y1 ≤ 30, 30 < Y2 ≤ 55, Y3 ≥ 60, and Y4 ≥
80) were imposed as constraints for optimization. The
responses were related to the independent experimental
variables (formulation factors) by applying multiple lin-
ear regressions (MLRs) and fitting of second-order poly-
nomial equations including two-factor interaction
terms:

where A0 is an intercept, A1–A5 are the coefficients of the
respective variables and their interaction terms, and E is
an error term.

The obtained polynomial equations (full models)
were simplified applying a backward elimination proce-
dure (P to remove = 0.051) and the highest adjusted
coefficient of determination,  [(lowest standard
error of estimates (SEE)], was selected. The MLR was
performed using the MATLAB program (Mathworks
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Inc., Natick, MA, USA). Response surface methodology
was also applied to visualize the effects of the formula-
tion factors on the selected release parameters.

Support vector regression
The basic idea of using support vector machines for
regression (SVR) was to map data, X, into a higher-
dimensional feature space, F, through a nonlinear map-
ping function, j, and then to perform linear regression in
this space10,16. The most general equation of nonlinear
SVR regression resulting in a hypersurface hanging over
the n-dimensional X-space is

where ji(Χ) is called the kernel that represents mapping
from the input feature space to a higher-dimensional
one and wi is a learning adjustable coefficient. A typical
graph of a (nonlinear) regression problem and all the
relevant mathematical variables and objects are shown
in Figure 1, where xi and xj* are slack variables for mea-
surements ‘above’ and ‘below’ an e-tube, respectively17.

In this work, the experimental data were scaled to
zero mean and standard deviation to unity, to normalize
the effect of the different factors (independent vari-
ables). These normalized factors were used as inputs for
the construction of the SVM model. First, the radial basis
function kernel was selected. Its width was set to 2
because it had good general performance. Then, the SVR
model’s error tolerance, e, and regularization parameter,
C, were optimized by systematically changing their
values in the training step and calculating the R2 of the
model.

Validation of external predictability of SVR model
The suggested SVR model and the chosen experimental
design were validated for external predictability using
release data of six checkpoint formulations, other than
those used in the experimental design. Tablets of com-
position corresponding to these test points were pre-
pared and evaluated based on the selected release
parameters. Subsequently, the experimental results
were compared with predicted values.

Computer programs and optimization
The LIB-SVM software package (available on http://
www.csie.ntu.edu.tw/~cjlin/libsvm/) that runs on the
MATLAB platform was used. Methodology of contour
plots was applied using MATLAB v. 7.3.0 (MathWorks
Inc.) on Pentium IV 2.4 dual core processor, to visualize
the effects of the formulation factors on the dependent
variables.

Results and discussion

Release programming
Release profiles of pentoxifylline from the 11 matrix tab-
lets involved in the experimental design are shown in
Figure 2. The results of the response parameters are pre-
sented in Table 1 together with the predicted values by
the SVR and MLR models, respectively.

From Table 1 and Figure 2, it can be seen that the
release rate generally increases with increasing percent-
age of sodium alginate (X2) and decreasing matrix
former: drug weight ratio (X1). This can be explained by
the easier and increased erosion of the tablets, because
sodium alginate is easily erodible in water, and by the
reduced matrix swelling due to decreasing matrix
former: drug weight ratio.
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Figure 1. Typical graph of a (nonlinear) regression problem with the
relevant mathematical variables and objects (xi and xj* are slack
variables for measurements ‘above’ and ‘below’ e-tube, respectively,
and filled square data are support vectors whereas the empty ones
are not)16.
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Figure 2. Pentoxifylline release profiles of the experimental matrix
tablets with composition described in Table 1.
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The release rate was slowest for the formula 1 con-
taining 800 mg of ethylcellulose only (without sodium
alginate) as matrix former. The highest release rate is
seen for formula 9 corresponding to 400 mg matrix
former containing 50% w/w sodium alginate. The wide
range of the dissolution rate, from extremely slow
(14% at 12 hours, formula 1) to fast (96.5% at 4 hours for
formula 9), indicates that the experimental domain is
suitable for optimization.

For the SVR, it is known that the optimal value of
model’s error tolerance, e, depends on the type of noise
present in the data, which is usually unknown. Even if
sufficient knowledge of the noise is available, to select an
optimal value for e some practical consideration of the
number of resulting support vectors is important. After
computing R2 for different models, the optimal value of e
was found to be 1.9. The parameter of regularization, C,
which controls the trade-off between maximizing the
margin and minimizing the training error is also impor-
tant. If C is too small, then insufficient stress will be
placed on fitting the training data. On the contrary, if C is
too large, then the SVR model will overfit on the training
data. To find an optimal value of C, the R2 of SVR models
with different C values was calculated. The obtained
results revealed that a suitable value of C was 191.

From Table 1, it can be seen that the predicted values
by SVR (PSVR) are closer to the experimental values than
those predicted by MLR (PMLR) with minor exceptions.
The overall prediction ability was estimated based on
the values of coefficient of determination (R2) and pre-
diction error sum of squares (PRESS) calculated on the
basis of the whole set of experimental data for the
constructed SVR and MLR models (11 formulations),
presented in Table 2. It can be seen that the R2 values are
higher and PRESS values are lower for SVR than for MLR
models indicating better internal predictability, in the
case of SVR than that of MLR for the four responses.

The high R2 and low PRESS values, which indicate
high internal predictability, do not guarantee high ability
to predict external points. Therefore, six checkpoint

formulations, which lie within the experimental domain
but are different to those involved in the experimental
design, were used to validate the external predictability
of SVR and MLR models18,19. The compositions of the
checkpoints are listed in Table 3 together with the
predicted, the experimental, and the residuals values of
the response variables. In general, the predicted values
were in good agreement with the experimental results of
the selected responses (Table 3) and the residuals varied
from −5.2 to +5.6 and from −9.0 to +16.2 for SVR and
MLR, respectively, indicating superiority of SVR.

For further comparison of SVR and MLR models, lin-
ear correlation of predicted versus experimental data
was performed18 and the corresponding results of R2 and
slope are shown in Table 4, together with the values of
mean relative error (MRE) calculated according to the
following equation20:

where ei is the experimental value of ith matrix tablet for-
mulation, Pi is the predicted value of ith matrix tablet
formulation, and n is the number of the formulations.

The results in Table 4 show that the prediction ability
is better in the case of the SVR, resulting in higher R2

values and lower MRE values. Therefore, because for the
ER system under investigation (which is multi-variate)
the quantitative relationship between causal factors
and response variables is expected to be complex and

Table 1. Experimental and predicted values of drug release (responses) by support vector (PSVR) and multiple linear (PMLR) regression analyses.

Batch no.

Formulation 
factors

Release responses

Y1 Y2 Y3 Y4

X1 X2 E PSVR PMLR E PSVR PMLR E PSVR PMLR E PSVR PMLR

1 2 0 3.8 5.7 4 6.6 8.5 7.8 10.3 12.2 5.5 14 15.9 12.3

2 2 25 9.6 11.5 6.4 27.7 29.6 25.7 54.3 56.2 64.1 77.3 75.3 81.2

3 2 50 16.5 15.2 19.5 64.7 62.8 65.5 100.3 98.4 95.3 100.4 98.5 98.1

4 1.5 0 5.5 7.4 5.8 9 10.9 5.8 13.9 15.8 10.4 19.4 21.3 16.6

5 1.5 25 9.7 11.3 11.5 27.5 29.4 30.9 62.7 64.6 67.4 81.2 81.4 83.5

6 1.5 50 33.2 31.3 28 80.5 78.6 78 100.1 98.1 96.9 100.3 98.1 98.5

7 1 0 4.7 6.6 4.2 9.7 11.6 11.7 15.9 17.8 24.2 20.7 22.6 25.2

8 1 25 15 14.8 13.3 47.7 45.8 44 95.8 93.9 79.5 98.4 96.5 90.1

9 1 50 30.8 28.9 33 96.5 94.6 98.2 99.3 97.4 107.4 99.3 97.4 103.1

10 1.5 25 9.4 11.3 11.5 29.1 29.4 30.9 64 64.6 67.4 81.8 81.4 83.5

11 1.5 25 10.5 11.3 11.5 30.4 29.4 30.9 68.8 64.6 67.4 83.3 81.4 83.5

Table 2. Values of R2 and PRESS for the constructed SVR and MLR
models.

Response

SVR MLR

R2 PRESS R2 PRESS

Y1 0.9947 30.138 0.9354 64.001

Y2 0.9988 33.576 0.9935 58.702

Y3 0.9981 50.489 0.9525 601.073

Y4 0.9997 32.685 0.9880 145.601

MRE
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nonlinear, we can conclude that the SVR appears to be
more suitable than the polynomial equations in han-
dling problems of ER programming like other cases of
QSAR21, prediction of toxic activity8 or peptide mobility
in capillary electrophoresis22, and optimization of chro-
matographic separation23.

Optimization (location of optimal formulation)
According to USP 31 (Dissolution Test 1), the pentoxifyl-
line ER tablets, after 1 hour of testing, have to release not
more than 30% of pentoxifylline, after 4 hours 30–55%,
after 8 hours not less than 60%, and after 12 hours of test-
ing not less than 80%14. The region range of formulation
factor values obeying these constraints for the ER system
under consideration was obtained by superposition of
contour plots. Figures 3a–d and 4a–d present contour
plots showing the effects of formulation factors (matrix
former: drug weight ratio and sodium alginate percent-
age in the matrix former) on the responses (pentoxifyl-

line release after 1, 4, 8, and 12 hours), which are based
on the data derived by the proposed SVR and second-
order polynomial equations, respectively. They show a
nonlinear relationship between the formulation factors
and the predicted release parameters by employing the
SVR (Figure 3a–d), whereas using the second-order
polynomial equations the contour plots are character-
ized by relatively plane surfaces (i.e., parallel contours)
for all the responses (Figure 4a–d).

Figure 5 presents the superposition of the four con-
tour plots derived by the SVR modeling and together
with Table 1 shows that only formula 8 (low level of
matrix former: drug weight ratio and medium level of
sodium alginate content) agrees with these constraints,
whereas formulas 5, 10, and 11 (medium levels of both
factors) are almost at the border of the acceptance limits
although they show better linearity over a 12-hour disso-
lution period. The other formulas have experimental
and predicted values for Y2 outside the acceptance range
(30–55%). Considering these constraints and taking into
account that formula 8 requires minimal amount of
polymer mixture as matrix former, which means reduc-
tion in tablet weight and cost, it can be considered as the
‘optimal’ solution estimated on the basis of SVR.

Figure 6 presents the experimental release profile and
data predicted by the SVR and MLR models for the opti-
mal formula 8 and shows higher similarity of release
profiles for the case of SVR compared to MLR and there-
fore its superior prediction ability. This superiority

Table 3. Composition of the checkpoint formulations and values of experimental and predicted response variables and corresponding residuals.

Formulation no. and factors

Response E PSVR ResidualsSVR PMLR ResidualsMLRX1 X2

1 1.25 14 Y1 9.4 8.2 1.2 11.7 − 2.3

Y2 23.8 21.1 2.7 30.9 − 7.1

Y3 47.4 51 − 3.6 56.4 − 9

Y4 58.5 63.7 − 5.2 63.7 − 5.2

2 1.7 10 Y1 5.6 5.9 − 0.3 10 − 4.4

Y2 17.5 11.9 5.6 23.1 − 5.6

Y3 38.2 33.7 − 4.5 38.4 − 0.2

Y4 47.5 47.7 − 0.2 46.7 0.8

3 2 35 Y1 12.3 10.3 2 13.2 − 0.9

Y2 41.1 39 2.1 41.2 − 0.1

Y3 82.2 79.9 2.3 69.7 12.3

Y4 97.8 94.2 3.6 81.6 16.2

4 1.8 50 Y1 27.4 23.3 4.1 19.5 7.9

Y2 71.4 69.6 1.8 63.7 7.7

Y3 96.1 94.9 1.2 92.7 3.4

Y4 99.7 97.8 1.9 93.6 6.1

5 1.3 32 Y1 18.7 16.5 2.2 15.5 3.2

Y2 49.6 47 2.6 43.2 6.4

Y3 82.2 82 0.2 75.4 6.8

Y4 98 94.9 3.1 84.4 13.6

6 1.85 37 Y1 14.1 13.7 0.4 14.7 − 0.6

Y2 45.1 43.9 1.2 45.5 − 0.4

Y3 81.7 82.3 −0.6 73.5 8.2

Y4 93.3 95.8 − 2.5 82.5 10.8

Table 4. Parameters of linear correlation between predicted and
experimental data (R2 and slope) of the checkpoint matrix tablets,
together with values of mean relative error.

Response

SVR MLR

R2 Slope MRE R2 Slope MRE

Y1 0.9884 0.8188 10.7 0.9837 0.4283 26.8

Y2 0.997 1.055 9.8 0.974 0.7095 14.4

Y3 0.986 1.0046 4.1 0.9145 0.771 9.4

Y4 0.9833 0.9105 3.5 0.928 0.7104 9.8
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Figure 3. Contour plots showing the effects of formulation factors on percentage of pentoxifylline released after (a) 1, (b) 4, (c) 8, and (d) 12 hours,
predicted by SVR.
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Figure 4. Contour plots showing the effects of formulation factors on percentage of pentoxifylline released after (a) 1, (b) 4, (c) 8, and (d) 12 hours,
predicted by the second-order polynomial equations.
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appears clearer for Y3 and Y4 than for Y1 and Y2.
However, the relative residuals (i.e., residuals divided by
the experimental values) are comparable for the four
responses (independent variables).

Similarity factor, f2, was used to assess the global
empiric similarity, although it does not account for the
individual time point data variability. Calculation of f2
according to the equation

where Rt and Tt are the amounts dissolved at time t, for
the reference and test sample, respectively, and n is the
number of samples, confirmed the superiority of the SVR
model (f2 = 86.6 compared to f2 = 51.3 of the MLR
model).

Conclusion

The superiority of SVR in handling nonlinear formula-
tion data and in predicting formulation factors obeying
Pharmacopeial constraints for ER systems clearly shows
its applicability in the rational development of appropri-
ate ER formulations and in their in vitro evaluation. The
results prove the suitability of SVR models for use in for-
mulation of optimization problems within the context of
the pharmaceutical QbD initiative.
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